Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat (SPLK)
Soal pertama sepertinya tentang Sistem Persamaan Linear Kuadrat, soalnya kurang lebih seperti berikut ini.
Gambarlah grafik fungsi $y=x^{2}-6x+8$ yang berpotongan dengan grafik fungsi $y=7-4x$! Tentukan titik perpotongan grafik tersebut!
Kalau untuk menggambarnya serahkan kepada saya, sahut Ema.
Untuk menggambar grafik $y=7-4x$
#Kita cari titik potong terhadap sumbu-$x$ sehingga $y=0$.
$y=7-4x$
$0=7-4x$
$4x=7$
$x=\frac{7}{4}$
Titik potong terhadap sumbu-$x$ adalah $(\frac{7}{4},0)$.
##Kita cari titik potong terhadap sumbu-$y$ sehingga $x=0$.
$y=7-4x$
$y=7-4(0)$
$y=7$
Titik potong terhadap sumbu-$y$ adalah $(0,7)$.
Dengan menghubungkan kedua titik tersebut dapatlah grafik $y=7-4x$.
Sekarang bagaimana menggambar $y=x^{2}-6x+8$, fungsi ini di sebuu dengan istilah Fungsi Kuadrat
#Kita cari titik potong terhadap sumbu-$x$ sehingga $y=0$.
$y=x^{2}-6x+8$
$0=x^{2}-6x+8$
$0=(x-4)(x-2)$
$x=4$ atau $x=2$
Titik potong terhadap sumbu-$x$ adalah $(4,0)$ dan $(2,0)$
##Kita cari titik potong terhadap sumbu-$y$ sehingga $x=0$.
$y=x^{2}-6x+8$
$y=0^{2}-6(0)+8$
$y=8$
Titik potong terhadap sumbu-$y$ adalah $(0,8)$.
###Kita cari titik puncak $x_{p},y_{p}$ dari $y=x^{2}-6x+8$
$x_{p}=-\frac{b}{2a}$
$x_{p}=-\frac{-6}{2(1)}$
$x_{p}=-3$
$x_{p}=-3$ ini juga disebut dengan sumbu simetri.
$y_{p}=-\frac{D}{4a}$
$x_{p}=-\frac{b^{2}-4ac}{4a}$
$x_{p}=-\frac{(-6)^{2}-4(1)(8)}{4(1)}$
$x_{p}=-\frac{36-32}{4}=1$
Titik puncak $y=x^{2}-6x+8$ adalah $-3,1$
Dengan menghubungkan ketiga titik diatas dengan garis melengkung dengan sumbu simetri $x_{p}=-3$ dapatlah grafik $y=x^{2}-6x+8$.
Jika kita gambar $y=x^{2}-6x+8$ dan $y=7-4x$, kurang lebih seperti berikut ini:
Untuk mencari titik potongnya, kita coba dengan mensubstitusikan kedua kurva $y=x^{2}-6x+8$ dan $y=7-4x$.
$y=y$
$x^{2}-6x+8=7-4x$
$x^{2}-6x+4x+8-7=0$
$x^{2}-2x+1=0$
$(x-1)(x-1)=0$
$x=1$
Maka saat $x=1$ kita peroleh nilai $y=7-4x=7-4(1)=3$.
Titik perpotongan grafik adalah $(1,3)$.
Mudah-mudahan, yang membaca ngerti iya Mat, seru Tika setelah selesai mengerjakan soalnya.
Jika ada masukan yang sifatnya membangun terkait masalah Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat (SPLK), silahkan disampaikan, kami dengan senang hati segera menanggapinyaCMIIWπ.
Jangan Lupa Untuk Berbagi πShare is Caring π dan JADIKAN HARI INI LUAR BIASA! - WITH GOD ALL THINGS ARE POSSIBLEπ
Video pilihan khusus untuk Anda π Bagaimana perkalian dikerjakan dengan cara pilar (*pintar bernalar);
Belum ada Komentar untuk "Diskusi Soal Tentang Sistem Persamaan Linear Kuadrat (SPLK)"
Posting Komentar