Laporan Praktikum Efek Zeeman

www.IndoINT.com
Laporan Praktikum Efek Zeeman



EFEK ZEEMAN


I. Latar Belakang

          Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat, tetapi dapat diamati ketika media itu diberikan kepada atom. Hal ini akan tampak sebagai spektrum yang terbagi pada peristiwa emisi karena energinya bisa sedikit lebih besar atau kecil dari keadaan tanpa medan magnet. Terpecahnya garis spektrum tunggal menjadi garis-garis terpisah terjadi jika atom dipancarkan kedalam medan magnet dengan jarak antara garis bergantung dari besar medan itu. Terpecahnya garis spektral oleh medan magnet disebut Efek Zeeman. Efek zeeman diambil dari nama fisikawan Belanda Zeeman, yang mengamati efek itu pada tahun 1896. Efek Zeeman adalah pemisahan garis spektral tunggal dari sebuah spektrum emisi menjadi komponen-komponen tiga atau lebih yang terpolarisasi. Efek Zeeman ideal terdiri dari garis spektral terfrekuensi v0 yang terpisah menjadi tiga komponen berfrekuensi. Efek Zeeman tidak dapat dijelaskan dengan menggunakan atom Bohr dengan demikian diperlukan model atom yang lebih lengkap(Giancoli,2001).
          Oleh karena itu dilakukanlah percobaan imi untuk dapat memahami lebih dalam mengenai Efek Zeeman serta dapat mengaplikasikannya dalam kehidupan sehari-hari.


II. Tujuan Percobaan
2.1 Memahami prinsip kerja Efek Zeeman
2.2 Menghitung momen magneton Bohr dari hasil eksitasi lampu Cadmium


III. Dasar Teori

          Efek Zeeman adalah efek garis-garis tambahan dalam spektrum emisi saat atom-atom tereksitasi diletakkan didaerah bermedan magnet homogen. Dalam medan magnet, energi keadaan atomik tertentu bergantu pada harga Mt seperti juga pada n. Keadaan atom dengan bilangan kuantum n, terbelah menjadi beberapa jika keadaan itu berada dalam medan magnet, dan energinya bisa sedikit lebih besar atau lebih kecil dari keadaan tanpa medan magnet. Gejala itu menyebabkan terpisahnya spektrum garis menjadi garis-garis halus yang terpisah jika atom diletakkan dalam medan magnet. Peristiwa terpecahnya spektrum garis menjadi garis-garis halus dalam medan magnet disebut Efek Zeeman(Savin,1999).
          Pada Efek Zeeman normal, sebuah garis spektrum terpisah menjadi tiga komponen. Hal ini karena spin elektron diabaikan. Elektron memiliki spin sehingga momen magnet spin juga harus ditinjau. Jika hal ini dilakukan, pada pemisahan tingkat energi menjadi lebih rumit dari garis-garis spektrum dapat terpisah menjadi lebih dari tiga komponen. Sehingga kasus inilah yang dikenal sebagai Efek Zeeman tidak normal(Ruswanto,2007).
          Jika atom homogen yang berada dalam keadaan 2p (l=1) ditempatkan dalam medan magnet homogen B (vektor), maka momen magnet μL (vektor) akan berinteraksi dengan medan magnet B yang menghasilkan energi :
Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman
Persamaan diatas menunjukkan bahwa momen magnet yang searah dengan medan magnet akan memiliki energi yang lebih rendah daripada momen magnet yang berlawanan dengan medan magnet. Jika medan magnet searah sumbu Z, maka :
Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman
Ingat bahwa medan magnet B searah dengan sumbu z dan komponen L yang searah dengan sumbu z adalah Lz. Dengan mengingat Lz = ml.ħ diperoleh :
Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman
Besarnya μB = eħ/2m dikenal dengan magneton Bohr (μB = 9,27.10-24 J/T). Jika tanpa medan magnet, tingkat 2p memiliki energi E0 = -3,4 ev dan jika ada medan magnet, energinya menjadi E0 + E = E0 + mlB.B. Artinya dengan medan magnet sekarang terdapat tiga energi yang berbeda tegantung pada nilai ml(Krane,2011).
          Dalam medan magnet eksternal B, sebuah kutub magnet mempunyai energi potensial Vm yang bergantung dari besar momen magnet μ dan orientasi momen terhadap medan. Fungsi energi potensial magnet sebuah atom dalam medan magnet adalah :
Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman
dengan cos θ = ml / √l(l+1), sedangkan harga L = ħ √l(l+1. Untuk mendapatkan energi magnetik sebuah atom yang mempunyai bilangan kuantum magnetik ml jika atom itu terletak dalam medan magnetik B, dimasukkan persamaan cos θ dan L dalam persamaan (4), maka (Beiser,1995) :
Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman
          Prinsip utama Efek Zeeman adalah mudah memecah spektrum garis sebuah atom menjadi garis-garis halus dalam medan magnet. Elektron yang bergerak mengelilingi orbitnya dapat menghasilkan arus dan medan magnet yang mana memisahkan momen magnet, besarnya arus yang dihasilkan dapat dirumuskan sebagai berikut (Serway,2010) :
Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman
sedangkan momen magnetik yang dihasilkan besarnya sebagai berikut :
μ = I.A
μ = - e.f.A
μ = - e.f.2π.r2 ..........(7)
          Prinsip kerja dari Efek Zeeman ialah menguji lampu Cadmium tanpa menggunakan medan magnetik cahaya yang dipancarkan oleh lampu tersebut kemudian melewati rangkaian optik interferometer agar pada layar dapat diketahui pola gelap dan pola terang, pada layar akan terlihat garis spektral yang terpisah antara satu garis dengan garis yang lainnya, apabila medan magnetik diperbesar maka akan telrihat suatu garis yang terpecah dari garis awalnya. Spektrum garis atomik teramati saat arus listrik dialirkan melalui gas didalam sebuah tabung lecutan gas. Garis-garis tambahan dalam spektrum emisi teramati jika atom-atom tereksitasi diletakkan dalam medan magnet luar. Satu garis didalam spektrum garis emisi terlihat sebagai tiga garis (dengan dua garis tambahan) didalam spektrum apabila atom diletakkan didalam medan magnet ketika medan magnet diberikan, keadaan-keadaan doblet atau triplet dapat terpisah pada tingkat energi yang terdegenerasi. Fenomena pemisahan garis spektral oleh medan magnet disebut sebagai Efek Zeeman(Kehn,1994).


IV. Metodologi Percobaan
4.1 Alat dan Bahan
a. Amperemeter (1 buah), berfungsi sebagai pengukur arus yang diberikan
b. Power supply (1 buah), berfungsi sebagai sumber tegangan
c. Elektromagnet (1 buah), berfungsi sebagai sumber medan magnet
d. Lampu Cadmium (1 buah), berfungsi sebagai sumber cahaya yang diamati
e. Kapasitor (1 buah), berfungsi sebagai penyimpan muatan dan penyetabil arus
f. Teslameter (1 buah), berfungsi sebagai penghitung medan magnet
g. Sistem optik yang terdiri dari iris diafragma, lensa +50 mm, Fabri-Perot interferometer, lensa +30 mm, analyser, lensa +150 mm, 4 garis spektral (masing-masing 1buah), berfungsi untuk melihat peristiwa Efek Zeeman


4.2 Gambar Rangkaian Alat


Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman


4.3 Langkah Kerja
Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman


4.4 Metode Grafik
           4.4.1 Perbandingan medan magnet terhadap arus

Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman


          4.4.2 Hubungan ΔV/2 terhadap medan magnet

Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman


V. Data dan Analisa


5.2 Analisa Data
          Percobaan ini dilakukan untuk melakukan pengamatan terhadap spektrum yang terbentuk dari sebuah sumber cahaya (lampu cadmium) ketika diberikan medan magnet yang berasal dari sebuah kumparan yang dihasilkan oleh arus listrik. Diantara kumparan tersebut dipasang lampu cadmium sebagai sumber cahaya yang akan diuji. Agar lebih mudah diamati, pada rangkaian optik diberi filter cahaya (iris diafragma) yang hanya dapat meneruskan cahaya merah, sehingga dari lensa dapat terlihat pola melingkar dari garis-garis spektrum tersebut.
          Prinsip kerja pada percobaan ini adalah menguji lampu cadmium dengan menggunakan medan magnetik, kemudian cahaya akan diteruskan melewati rangkaian interferometer sehingga pada layar dapat teramati pola gelap dan terang. Pada layar juga terbentuk garis spektral yang terpisah antara satu garis dengan garis lainnya. Apabila medan magnetik diperbesar maka akan semakin terlihat suatu garis yang terpecah dari garis awalnya.
          Pada pecobaan ini digunakan variasi arus yang dimulai dari 0 sampai 6,4 Ampere dengan penambahan inverval sebesar 0,4 Ampere. Semakin besar arus yang diberikan terhadap kumparan maka semakin besar pula medan magnet yang dihasilkan, sehingga jari-jari yang dihasilkan pada pola garis spektral semakin lebar. Data yang diperoleh pada percobaan ini adalah arus yang digunakan dan jari-jari dari perpecahan spektral atomik dari atom tersebut.


Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman

Dari tabel 1 diketahui bahwa variabel terikatnya adalah kuat medan magnet (B) dalam militesla (mT) dan variabel bebasnya adalah kuat arus (I) dalam ampere (A). Dari grafik 1 diatas didapatkan nilai gradien atau slope (m) sebesar 76,846 dan dengan ketelitian sebesar 99,6%. Pada grafik 1 terlihat bahwa hubungan antara medan magnet dan arus berbanding lurus. Artinya semakin besar arus yang diberikan terhadap kumparan maka medan magnet yang dihasilkan semakin besar pula. Hal ini dapat mempengaruhi garis-garis spektral yang terbentuk.
          Untuk menentukan nilai magneton Bohr, maka langkah awal adalah mencari nilai jari-jari dalam (ra) dan luar lingkaran (rb) pada garis spektral yang terbentuk sebanyak 4 garis dari titik pusat, yang disebabkan oleh variasi arus yang diberikan mulai dari 0 sampai 6,4 Ampere, dengan interval penambahan 0,4 Ampere. Berdasarkan percobaan diperoleh data jari-jari dalam (ra), jari-jari luar (rb), arus (I), dan medan magnet (B), sehingga dapat ditentukan grafik hubungan antara ΔV/2 terhadap medan magnet (B) seperti pada gambar grafik berikut ini


Peristiwa kemagnetan ternyata tidak berhenti pada keadaan makroskopis yang dapat dilihat Laporan Praktikum Efek Zeeman

Dari grafik 2 diatas diperoleh nilai slopenya atau gradien (m) sebesar 2,91.10-5 sehingga jika dimasukkan pada persamaan yang ada didapatkan nilai magneton bohr atau μB sebesar 5,79.10-30 J/T. Hasil tersebut berbeda dengan literatur yaitu 9,27.10-24 J/T dan menurut literatur juga bahwa semakin besar medan magnet yang dihasilkan maka nilai dari ΔV/2 juga akan semakin besar. Hubungan antara medan magnet dengan ΔV/2 adalah berbanding lurus. Akan tetapi pada grafik 2 diatas dapat diamati bahwa titik-titiknya mengalami fluktuasi (naik-turun). Hal ini dapat disebabkan beberapa faktor kesalahan, antara lain seperti pembacaan nilai amperemeter yang salah sebab nilainya berubah-ubah, kesalahan dalam membaca besar jari-jari pada garis yang terbentuk, intensitas lampu cadmium yang sudah mulai berkurang, arus yang tidak stabil pada kapasitor, dan lain-lain.
          Pada saat percobaan, ketika lampu cadium diberi arus kecil maka garis spektral yang terbentuk hanyalah lingkaran tipis, belum terlihat pecahan garis spektralnya. Namun ketika diberi arus yang semakin besar maka diperoleh garis spektral yang terlihat jelas dan jari-jarinya semakin besar   


VI. Kesimpulan
6.1 Prinsip kerja Efek Zeeman adalah menguji lampu cadmium dengan menggunakan medan magnetik, kemudian cahaya akan diteruskan melewati rangkaian interferometer sehingga pada layar dapat teramati pola gelap dan terang. Pada layar juga terbentuk garis spektral yang terpisah antara satu garis dengan garis lainnya. Ketika medan magnet semakin besar maka garis spektrumnya terlihat jelas terpecah menjadi garis-garis yang halus

6.2 Nilai magneton Bohr dari hasil eksperimen lampu cadium yaitu sebesar μB = 5,79.10-30 J/T sedangkan pada literatur sebesar μB = 9,27.10-24 J/T


VII. Daftar Pustaka
Beiser, A.1995. Konsep Fisika Modern Edisi Ketiga. Jakarta : Erlangga.
Giancoli, Douglas.2001. Fisika Jilid 2. Jakarta : Erlangga.
Kehn, Keneth.1994. Fisika Modern Edisi Keempat. Jakarta : Bumi Aksara.
Krane, K.1995. Konsep Fisika Mdern Edisi Ketiga. Jakarta : Erlangga.
Ruswanto, B.2007. Asas-Asas Fisika. Jakarta : PT Ghalia Indoretis.
Savin, W.1999. Modern Physics Second Edition. NCW Jersey : Mc Graw-Hill.
Serway, R.A.2010. Physics For Sciention and Engineer Volume 2 Edition 8. Canda : Cengage Learning.


VIII. Bagian Pengesahan

-


IX. Lampiran

9.1 Perhitungan Grafik
μB = m.h.c
μB = 2.91.10-5.6,626.10-34.3.108
μB = 5,79.10-30 J/T


9.2 Excel 1 dan Excel 2



Sumber https://www.hajarfisika.com/

Belum ada Komentar untuk "Laporan Praktikum Efek Zeeman"

Posting Komentar

Iklan Atas Artikel

Iklan Tengah Artikel 1

Iklan Tengah Artikel 2

Iklan Bawah Artikel